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We develop a model in which investors must learn the distribution of asset returns

over time. The process of learning is made more difficult by the fact that the

distributions are not constant through time. We consider risk-neutral investors

who have quadratic utility and are selecting between two risky assets. We

determine the time at which it is optimal to update the distribution estimate and

hence, alter portfolio weights. Our results deliver an optimal policy for asset

allocation, that is, the sequence of time intervals at which it is optimal to switch

between assets, based on stochastic optimal control theory. In addition, we

determine the time intervals in which asset switching leads to a loss with high

probability. We provide estimates of the effectiveness of the optimal policy.
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1. INTRODUCTION

Rational expectations has established a long tradition in economics. The
theory of rational expectations has two components: first, that individuals
maximize a specified function subject to constraints; and second, that the
constraints perceived by individuals are mutually consistent. In applica-
tions to portfolio selection in finance, the second component typically
means that the individuals know the underlying probability distributions
for asset returns. As Sargent (1993) describes, because individuals are
assumed to know the underlying distributions, modeling individual learn-
ing is not a central feature of a rational expectations equilibrium. Recently,
a literature has developed that moves away from rational expectations by
removing the second component. That is, individuals still maximize a
specified function, but they do so in the presence of uncertainty about the
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underlying probability distribution. To resolve the uncertainty, the indi-
viduals learn about the underlying distribution in much the same way that
the econometrician studying the problem does, by observing data and
revising estimates of the data generating process. Much is now known
about how agents learn in environments where the underlying distributions
are unchanging through time. We study learning in an environment in
which the underlying distributions are changing through time.

To study learning in a time-varying environment, we consider a risk-
neutral investor who is selecting between two risky assets. The underlying
distributions that generate the returns for the two assets change at unknown
points in time. The investor thus faces two sources of uncertainty: first, the
uncertainty about the distributions of the two assets in the first period; and
second, the uncertainty that results from the changes in the distributions
over time. Because the distributions change at unknown points in time, the
problem is more complicated than typically arises in standard models of
learning. We derive the optimal portfolio allocation strategy for the investor
based on stochastic optimal control theory.

To understand how stochastic optimal control theory relates to the
risk-neutral investor’s portfolio allocation problem, consider the following
model. Let the two assets be labeled asset 1 and asset 2 and assume that the
returns on the assets are independent. Rather than modeling the returns to
an asset directly, let the returns to an asset in a given period consist of the
sum of cash payments (or flows) that occur over the period. Each payment
in the cash flow stream is identical, both across time and assets, the variation
in returns is introduced through variation in the frequency with which cash
flows are paid. The cash flow stream for each of the assets is a Poisson
process. It is known that the intensity of the underlying Poisson process can
take on only two values, given by � > �, and that the process underlying
asset 1 has a different mean than the process underlying asset 2. Further, the
returns process of the two assets switches at random points in time unknown
to the investor. The points in time at which the mean cash flow from asset 1
switches between � and � are determined by a third independent Poisson
process that has intensity a. Thus the investor’s problem is dynamic; the
investor needs to determine which asset has the underlying Poisson process
with intensity � at a given moment in time.

By modeling the cash flows generated by each asset, we are able to link
directly to stochastic optimal control theory. The underlying data generat-
ing process for the cash flows corresponds to the two arms of the ‘‘two-
armed bandit’’ that is studied in the stochastic control literature. Because
the returns process switches at random points in time, the portfolio
allocation problem corresponds to the two-armed bandit problem with
unobserved switching between arms studied by Donchev (1995).
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We describe the investor’s problem with statistical hypotheses. The null
hypothesis is that asset 1 has the lower mean return, �, at a specific period.
We denote this hypothesis H1. At each moment in time the investor cal-
culates the probability that H1 is true. In period 0 the investor begins with
one dollar and the a priori3 probability x thatH1 is true. The investor’s plan,
or policy, consists of the investment allocation for each period. If we let the
random variable Ut indicate the proportion of the dollar that is invested in
asset 1 in period t, then the investor’s policy is a random process � ¼ Utf gt�0
where for each period t, the random variable 0 � Ut � 1 depends only on
past observations of returns to the two assets. (We assume that the investor
observes returns from both assets at each point in time.) We let N1ðt Þ be the
number of cash payments that accrue to the investor from asset 1 over the
time span ½0; t	 and let N2ðt Þ be defined analogously for asset 2.

The number of cash payments that accrue to an investor over the
period ð0;T Þ is Z T

0

ðdN1ðt Þ þ dN2ðt ÞÞ:

Because the number of cash payments is random, we work with the expected
number of cash payments. By construction, the maximum value of the
expected number of cash payments over the period ð0;T Þ is �T. The
expected number of cash payments received by the investor depends both on
the policy � and on x, which is the initial probability that asset 2 is the
higher mean return asset. The expected difference between an investor’s cash
payments and the maximum number of cash payments, denoted ��ðxÞ, is

��ðxÞ ¼ E�
x

Z 1
0

ðdN1ðt Þ þ dN2ðt Þ � � dt Þ < 0; ð1:1Þ

where E�
x denotes the expectation constructed under policy � with a priori

probability x. (Presman and Sonin (1990) show that E�
x is finite.) The policy

’ is optimal if

�’ðxÞ ¼ sup
�

��ðxÞ: ð1:2Þ

The quantity �’ðxÞ corresponding to the optimal policy is said to be a value
function of the problem. Let Ft denote all observations on N1ðt Þ and N2ðt Þ
up to time t. The conditional, or a posteriori, probability that H1 is true is
xt ¼ PxðH1jFt Þ, which depends on the a priori probability x.

3
For notational simplicity, we fix the investment base at one dollar, that is the investor

consumes each cash payment as soon as it is received.
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In an interval of length T, a Poisson process with mean cash flow �
generates �T cash payments on average. The parameter � is the jump rate of
the Poisson process, which is the expected number of cash payments (or
jumps) that accrue over one period. That is, if EdN1ðt Þ ¼ � dt, then � is the
jump rate for N1ðt Þ. Because N1ðt Þ is the number of cash payments that flow
to the investor from asset 1, the jump rate for N1ðt Þ depends on both the
jump rate for the asset and on the investor’s perception about the quality of
asset 1. (Clearly, if the investor thinks asset 1 is inferior to asset 2 over the
entire interval and so invests nothing in asset 1, the jump rate for N1ðt Þ
is zero even if the underlying asset actually generated cash flows.) The
investor’s conditional expectation of the jump rate for N1ðt Þ is
Ut½�xt þ �ð1� xt Þ	, where Ut measures the proportion of the dollar invested
in asset 1 and xt is the investor’s conditional probability that asset 1 has
jump rate �. Similarly, the investor’s conditional expectation of the jump
rate for N2ðt Þ is ð1�Ut Þ½�xt þ �ð1� xt Þ	, so (1.1) is

��ðxÞ ¼ �E�
x

Z 1
0

ð�� �Þ½Utxt þ ð1�Ut Þð1� xt Þ	 dt: ð1:3Þ

The investor’s decision problem is to choose � to maximize (1.3).
Because there are two sources of uncertainty for the investor, the initial
uncertainty about which asset has the higher expected return and the
additional uncertainty from the ‘‘switching’’ of the higher expected return
between assets, (1.3) is infinite for any reasonable policy. To ensure that the
decision problem is well defined, we introduce a discount factor 	 > 0 so
that the investor discounts future returns. The investor’s decision problem is
to choose � to maximize

��ðxÞ ¼ �E�
x

Z 1
0

e �	t½Utxt þ ð1�Ut Þð1� xt Þ	 dt: ð1:4Þ

As we show below, to choose the optimal value of Ut, the investor only
needs to know the a posteriori probability xt. Thus, the optimal policy is a
function ’ : ½0; 1	 ! ½0; 1	 that defines a correspondence between the values
of the a posteriori probabilities and the optimal values of fUtg. We let Ut ¼ 1
correspond to the decision to invest the entire dollar in asset 1, Ut ¼ 0
correspond to the decision to invest the entire dollar in asset 2, and the
boundary case Ut ¼

1
2 correspond to the decision to leave the entire dollar
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invested in the asset selected in the previous period. The optimal policy
function is of the form

’ðxt Þ ¼

1; xt <
1
2

0; xt >
1
2

1
2 ; xt ¼

1
2 :

8><
>: ð1:5Þ

The intuition for the result is straightforward. Because the investor is risk
neutral, the investor chooses to maximize expected return without regard to
risk. As a result, the investor will always choose to invest completely in the
asset with the highest expected return, so the only relevant values for Ut are
ð0; 12 ; 1Þ. Because ’ð � Þ is a function only of xt, the a posteriori probability xt
is a sufficient statistic for the optimal policy.

In Section 2 we describe the optimal policy that maximizes expected
discounted returns. In Section 3 we outline the proof of our main result,
namely the optimal policy for (1.4), and cite several results from Donchev
(1995) that characterize fxtg. (Complete proofs of all auxiliary results are
given in the appendices.) In Section 4 we consider the case � ¼ 0. If � ¼ 0,
the problem is simplified in such a way that we obtain explicit formulas for
the discounted expected returns that correspond to the optimal policy. We
use the formulas to calculate the maximum average return per unit time.

2. DESCRIPTION OF OPTIMAL POLICY

Before presenting the formal proof of the optimal portfolio allocation
policy, we describe the results in a nontechnical way. The key to under-
standing the derivation of the optimal policy consists of two parts: first, that
the optimal policy depends only on the process fxtg, and second, that the
process fxtg depends on the investor’s observations on cash flows. To specify
the investor’s observations on cash flows, let N �i ðt Þ, for i ¼ 1; 2, be the flow
of cash payments from asset i. Note that N �i ðt Þ is the flow of cash payments
generated by asset i, and so does not depend on the investor’s portfolio
allocation fUtg, while Niðt Þ is the flow of cash payments generated by asset i
that accrue to the investor, and so does depend on the investor’s portfolio
allocation fUtg.

To capture the investors observations on cash flows we specify the
process

Sðt Þ ¼
1þ

R t
0 N
�
1 ðsÞ ds

1þ
R t
0 N
�
2 ðsÞ ds

; ð2:1Þ
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which the investor is assumed to monitor. By construction Sð0Þ ¼ 1. An
advantage of monitoring the ratio is that the investor needs to keep track of
only one process. Unfortunately, it is not easy to obtain solutions for such a
ratio if � > 0. To treat the case for which � > 0, we also derive results when
the investor must monitor two cash flow processes, defined as

S1ðt Þ ¼

Z t

0

N �1 ðsÞ ds;

S2ðt Þ ¼

Z t

0

N �2 ðsÞ ds;

ð2:2Þ

where S1ð0Þ ¼ S2ð0Þ ¼ 0. We also assume that in altering the portfolio allo-
cation the investor bears transaction costs.We begin at period 0 and study the
actions of an investor over the time interval ½0; tA	. Suppose that x 2 ½0; 0:5	,
so that the investor believes that it is more likely that asset 1 has the higher
mean return. Initially, the investor places the entire dollar in asset 1.

To relate the relative outcome of a given investment plan, ��ðxÞ, to the
underlying cash flow processes, we split the positive time axis into sequential
intervals. If the first interval represents a period in which asset 1 has the
higher intensity cash flow �, then the second interval represents a period in
which asset 2 has the higher intensity cash flow. The points in time at which
the mean cash flow from asset 1 switches between � and � are determined by
a third Poisson process, which is independent of both N1ðt Þ and N2ðt Þ, that
has intensity a. The length of any interval is random and is determined by
the arrivals from a Poisson process with intensity a.

To understand the investors portfolio allocation decisions, we present
the decisions confronted by the investor in each case. The technical results
that underpin the investors decision are presented in the next section. For
each of the following cases, we first assume that the initial condition
x 2 ½0; 0:5Þ. (The case x 2 ð0:5; 1:0	 is symmetric as we show in (2.4). The
case x ¼ 0:5 is different, and we describe it below.) We illustrate the optimal
strategy for each case by examining one trajectory.

Case 1.We begin with the case in which the investor monitors the ratio
of cash flows from the two assets given by (2.1), thus � ¼ 0.

Suppose the process Sðt Þ stays below Sð0Þ þ "0 over the interval ½0; tA	.
(Here, "0 ¼ "0ð�Þ > 0. We allow the value of the transaction costs to depend
on both time and the intensity �.)4 Because the information from the

4
Because the investor is monitoring the ratio, the value "0ð�Þ must be chosen in such a way that
the value of t for which the ratio first crosses the value Sð0Þ þ "0ð�Þ is an exponential random
variable with mean 1=�.
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observed cash flows is not precise enough to overcome the transactions
costs, which are less than "0ð�Þ, the investor does not alter his portfolio. The
process xt increases continuously and approaches 0.5, because the value 0.5
corresponds to the belief that the assets are equally likely to have cash flows
generated by a Poisson process with intensity �. More precisely, as we derive
in Theorem 3.1, xt satisfies the following differential equation

x 0t ¼ �xtð1� xt Þ þ að1� 2xt Þ; ð2:3Þ

where x 0t ¼ dxt=dt. Recall that a > 0 is the rate at which the mean return of
the assets switches.

The process Sðt Þ goes above the level Sð0Þ þ "0ð�Þ for the first time at
time tB > tA. At the point tB the existing observations indicate that asset 1 is
the better asset, so xt jumps instantaneously to 0, that is xtB ¼ 0. At time tB
the bound for which the investor resets xt and so potentially alters portfolio
weights becomes SðtBÞ þ "Bð�Þ. If the value of Sðt Þ stays below SðtBÞ þ "Bð�Þ
over the period ½tB; tC	, then the process xt again increases continuously and
approaches 0.5 according to (2.3). At the point tC, the control xtC ¼

1
2
5. At

time tC the bound for which the investor resets xt becomes SðtCÞ þ "Cð�Þ.
The control remains at the value 1

2 as long as Sðt Þ remains within
½SðtCÞ � "Cð�Þ;SðtCÞ þ "Cð�Þ	. If Sðt Þ goes above the level SðtCÞ þ "Cð�Þ for
the first time at tDþ , then xt jumps instantaneously to zero. If Sðt Þ goes
below the level SðtCÞ � "Cð�Þ for the first time at tD� , then xt jumps
instantaneously to one. If Sðt Þ remains above SðtD�Þ � "D�ð�Þ, then xt
decreases continuously and approaches 0.5. Again from Theorem 3.1, xt
satisfies the following differential equation

x 0t ¼ ��xtð1� xt Þ þ að1� 2xt Þ; ð2:4Þ

with initial condition xD� ¼ 1:0.
Our optimal policy suggests that if xt is in the interval ½0; 0:5Þ, then the

investor should allocate his entire portfolio to asset 1. If xt is in the interval
ð0:5; 1	, then the investor should allocate his entire portfolio to asset 2. If
xt ¼ 0:5, then the investor’s decision is more complicated. With xt constant
at 0:5, the investor believes it equally likely that either asset is the high return
asset and so does not change his investment position.

The results in Section 3 reveal that under the optimal policy, the
investor allocates his portfolio to the high return asset at least half of the
time, on average. If �=a!1 then the average time that the investor

5
Because the process xt approaches the value

1
2 continuously from below, the process cannot

exceed 1
2 without first equalling

1
2 .
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allocates his portfolio in the high return asset tends to 1. More precisely, if
�=a!1 then for

lim
t!0

inf E�
x

1

�t
N1ðt Þ þN2ðt Þð Þ

� �
¼ 1þ g;

g! 0. An explicit expression for g ¼ lim	#0 	�	ðxÞ, with �	ðxÞ is the maxi-
mizer of (1.4), is contained in (4.3). In other words, if the underlying dis-
tributions of the assets switch rarely, then the investor almost always invests
in the high return asset.

Case 2. We now consider the general case in which � � 0, so the
investor monitors the two processes given by (2.2).

Over the interval ½0; tA	, the process S1ðt Þ stays below S1ð0Þ þ "0ð�Þ and
the process S2ðt Þ stays below S2ð0Þ þ �0ð�Þ. (The value of "0 depends on
� because the initial value x indicates that the investor believes asset 1 has
cash flows with intensity �.) The process xt increases continuously and
approaches 0.5, because the value 0.5 corresponds to the belief that the
assets are equally likely to have cash flows generated by a Poisson process
with intensity �. More precisely, as we derive in Theorem 3.1, xt satisfies the
following differential equation

x 0t ¼ ð�� �Þð2Ut � 1Þxtð1� xt Þ þ að1� 2xt Þ; 0 � t � tA

with initial condition x 2 ½0; 0:5Þ.
The process S1ðt Þ goes above the level S1ð0Þ þ "0ð�Þ for the first time at

time tB > tA, while the process S2ðt Þ remains below S2ð0Þ þ �0ð�Þ over the
interval ½tA; tB	. (There is zero probability that both processes will leave
their respective intervals at precisely the same moment.) At the point tB the
existing observations indicate that asset 1 is the better asset, so xt jumps
instantaneously to a lower level

xtB ¼
�x�tB

�x�tB þ �ð1� x
�
tB
Þ
< x�tB ;

where x�tB ¼ lims"tB xs.
The process S2ðt Þ goes above the level S2ð0Þ þ �0ð�Þ for the first time at

time tB, while the process S1ðt Þ remains below S1ð0Þ þ "0ð�Þ over the interval
½tA; tB	. At the point tB the existing observations indicate that asset 2 is the
better asset, so xt jumps instantaneously to a higher level

xtB ¼
�x�tB

�x�tB þ �ð1� x
�
tB
Þ
:
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The value of xtB , which depends on the value x
�
tB
, falls into one of the

following ranges: xtB <
1
2 ; or xtB >

1
2. If xtB <

1
2, then the investor continues

to invest his entire portfolio in asset 1. If, however, xtB >
1
2, then the investor

switches his entire portfolio in asset 2 at time tB. Because it is possible that
� > 0, there is no explicit formula for 1þ g and the 	-discounted total
reward, �	ðxÞ. However, we construct two-sided bounds for these quantities
(see Theorem 3.3).

3. FORMAL RESULTS

We begin this section with characterization of the process fxtg. For
notational ease, let N1

t ¼ N1ðt Þ, N
2
t ¼ N2ðt Þ, and " ¼ ð�� �Þ. We assume

that � > � � 0.

Theorem 3.1. The process fxtg is piecewise-deterministic and its jump-
rate is equal to Ut½�xt þ �ð1� xt Þ	 þ ð1�Ut Þ½�xt þ �ð1� xt Þ	. The jump-
times tn, n � 1; of fxtg coincide with those of the process fN

1
t þN

2
t g and its

state immediately after the n-th jump for n ¼ 1; 2; . . . is

xn ¼

�xtn
�x�tn þ �ð1� x

�
tn
Þ
; if N1

tn
�N1�

tn
¼ 1

�xtn
�x�tn þ �ð1� x

�
tn
Þ
; if N2

tn
�N 2�

tn
¼ 1:

8>>><
>>>:

ð3:1Þ

In every interval ½tn; tnþ1Þ, n � 0, t0 ¼ 0, the sample paths of fxtg satisfy the
following first-order differential equation

x 0t ¼ "ð2Ut � 1Þxtð1� xt Þ þ að1� �xt Þ

xtn ¼ xn;
ð3:2Þ

where x0 ¼ x and xn, n � 1 are given by formula (3.1).

Proof. See Appendix 1. &

The next theorem contains our main result. We provide the optimal
policy, which is the policy that yields the value

�	ðxÞ ¼ max
�
�E�

x

Z 1
0

e �	t½Ut xt þ ð1�Ut Þð1� xt Þ	 dt: ð3:3Þ
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Theorem 3.2. There exists a constant K � 0 that depends only on � and
such that for all a � K the policy (1.5) maximizes (1.4). Moreover, the
function K ¼ Kð�Þ is non-decreasing and Kð0Þ ¼ 0.

We only sketch the proof of this theorem. Making use of Theorem 3.1
we define operators L1;L2 and L acting on functions � 2 C1ð½0; 1	Þ by the
formulas

L1�ðxÞ ¼ ½"xð1� xÞ þ að1� 2xÞ	�
0ðxÞ

þ ½�xþ �ð1� xÞ	 �
�x

�xþ �ð1� xÞ

	 

� �ðxÞ

� �
� x; ð3:4Þ

L2�ðxÞ ¼½�"xð1� xÞ þ að1� 2xÞ	�
0ðxÞ

þ ½�xþ �Þð1� xÞ	 �
�x

�xþ �ð1� xÞ

	 

� �ðxÞ

� �
� ð1� xÞ

¼L1�ð1� xÞ; ð3:5Þ

L�ðx; uÞ ¼ uL1�ðxÞ þ ð1� uÞL2�ðxÞ: ð3:6Þ

Then, the Bellman equation corresponding to (3.3) turns into

max
u2½0;1	

L�ðx; uÞ ¼ 	�ðxÞ: ð3:7Þ

Because the operator L is a linear function of u, (1.5) and (3.4) imply that in
order to prove Theorem 3.2 it suffices to find a function � 2 C1ð½0; 1	Þ that
satisfies the conditions

L2�ðxÞ ¼ 	�ðxÞ; x � 1
2 ; ð3:8Þ

L1�ðxÞ � 	�ðxÞ; x � 1
2 ; ð3:9Þ

�ðxÞ ¼ �ð1� xÞ; x 2 ½0; 1	: ð3:10Þ

Such a function should also satisfy (3.7) and it should be a value function of
the problem (3.3). Note that condition (3.9) implies that

�0 1=2ð Þ ¼ 0: ð3:11Þ

278 Donchev, Rachev, and Steigerwald



Condition (3.8) is a functional-differential equation for the unknown
function �ðxÞ. After introducing a logarithmic scale y ¼ lnð1� xÞ � ln x and
a new unknown function Vð yÞ ¼ � 1=ð1þ e yÞð Þ the expressions for the
operators L1 and L2 take the following form

L1Vð yÞ ¼ � ð"þ 2 sinhð yÞaÞV 0ð yÞ

� �
1þ e yþ


1þ e y
½Vð yÞ � Vð yþ 
Þ	 �

1

1þ e y
; ð3:12Þ

L2Vð yÞ ¼ ð"� 2 sinhð yÞaÞV 0ð yÞ

� �
1þ e y�


1þ e y
½Vð yÞ � Vð y� 
Þ	 �

e y

1þ e y
; ð3:13Þ

where sinhð yÞ is the hyperbolic sin of y and 
 ¼ ln �� ln�. So, conditions
(3.8)–(3.11) turn into

L2Vð yÞ ¼ 	Vð yÞ; y � 0; ð3:14Þ

L1Vð yÞ � 	Vð yÞ; y � 0; ð3:15Þ

Vð yÞ ¼ Vð�yÞ; ð3:16Þ

V 0ð0Þ ¼ 0: ð3:17Þ

Let us note that in view of (3.13) the equation (3.14) has a constant delay. It
is convenient to define a new unknown function f ð yÞ; y � 0, by the formula

f ð yÞ ¼ ð1þ e �yÞVð yÞ: ð3:18Þ

Substituting Vð yÞ from (3.18) in (3.14) and utilizing (3.13) we obtain the
following equation for the function f ð yÞ:

f 0ð yÞ ¼
� ½ f ð yÞ � f ð y� 
Þ	 þ ðaþ 	� a e �yÞ f ð yÞ þ 1

"� 2 sinhð yÞa
: ð3:19Þ

As shown by Donchev (1995a, Thm 4.3 (see Appendix 3)) the general
solution of this equation on the negative half-line is

f ð yÞ ¼ �
1þ 	=aþ e �y

	ð2þ 	=aÞ
þ K�ð yÞ; K ¼ const; ð3:20Þ
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where �ð yÞ is a non-trivial solution of the corresponding homogeneous
equation, which has the value 1þ 	=aþ e �y þ oð1Þ as y!�1. To every
solution of Eq. (3.19) there corresponds a unique solution of Eq. (3.14).
Moreover, we are in a position to choose the constant K in (3.20) in such a
way that (3.17) holds. Taking an even continuation of function Vð yÞ on the
positive half-line we can fulfill condition (3.16) as well. To complete the
proof of Theorem 3.2 it suffices to verify the inequality (3.15). The main
difficulty in the proof of this inequality is that the function �ð yÞ in the right-
hand side of formula (3.20) cannot be represented in closed form. To
overcome the difficulty we obtain estimates which allow us to prove (3.14)
for all small enough �=a.

Let us set K ¼ 	�1 2þ 	=að Þ
�1 in (3.20) and denote by �ð yÞ the corre-

sponding solution of Eq. (3.19). Since the function �ð yÞ has the value
1þ 	=aþ e �y þ oð1Þ as y!�1, it follows that �ð yÞ ¼ oð1Þ as y!�1:
Consider the functions

d ð yÞ ¼
e �yð1þ x2 e

yÞ
�b
ð1þ x1 e

yÞ
�c
� ðe �y þ 1þ ð"þ 	Þ=aÞ

am
ð3:21Þ

Dð yÞ ¼
e �yð1þ x2 e

yÞ
�B
ð1þ x1 e

yÞ
�C
� ðe �y þ 1þ ð�þ 	ÞaÞ

aM
; ð3:22Þ

where

x1;2 ¼
"

2a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

"

2a

� 
2r
ð3:23Þ

are roots of the equation x2 � ð"=aÞx� 1 ¼ 0 and the other constants are
equal to

b ¼
1þ 	=aþ x2
x1 � x2

; c ¼ �
1þ 	=aþ x1
x1 � x2

; ð3:24Þ

B ¼
1þ ð�þ 	Þ=aþ x2

x1 � x2
; C ¼ �

1þ ð�þ 	Þ=aþ x1
x1 � x2

; ð3:25Þ

m ¼ �ðx1 � x2Þ
2bc ¼

	

a
2þ

	

a

	 

þ
"

a
1þ

	

a

	 

; ð3:26Þ

M ¼ �ðx1 � x2Þ
2BC ¼ 1þ

�þ 	

a

	 

1þ

�þ 	

a

	 

� 1: ð3:27Þ
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The functions d ð yÞ and Dð yÞ satisfy the ordinary differential equations

d 0ð yÞ ¼
1� ða e �y � a� 	Þd ð yÞ

"� 2 sinhð yÞa
; ð3:28Þ

D0ð yÞ ¼
1� ða e �y � a� �� 	ÞDð yÞ

"� 2 sinhð yÞa
; ð3:29Þ

respectively, as well as the condition

lim
y!�1

d ð yÞ ¼ lim
y!�1

Dð yÞ ¼ 0: ð3:30Þ

The following theorem (Donchev (1995, Thm 3.1) allows us to prove an
inequality that is stronger than (3.15).

Theorem 3.3. If �=a > 0 is small enough, then

0 < d ð yÞ < �ð yÞ < Dð yÞ; ð3:31Þ

0 < d 0ð yÞ < �0ð yÞ < D0ð yÞ; ð3:32Þ

for all y < 0.

Proof. See Appendix 2.
All details of the proof of inequality (3.15) can be found in Donchev

(1995a). So, all conditions (3.8)–(3.10) hold true for the function
�ðxÞ ¼ Vðln ð1� xÞ=xÞ. This completes the proof of Theorem 3.2. &

The function �ðxÞ ¼ Vðlnð1� xÞ=xÞ is the value function for (1.4). Note
that according to Theorem 3.3 both �ðxÞ and its first derivative can be
estimated by means of the functions d ð yÞ and Dð yÞ.

4. THE CASE �¼ 0

If � equals 0 then only one of the bandit’s arms yields a positive gain.
According to Theorem 3.2, if � ¼ 0 then the policy (1.5) is an optimal policy
for every a > 0. Comparing formulas (3.21) and (3.22), we obtain that in this
case both functions d ð yÞ and Dð yÞ coincide. Hence, in view of Theorem 3.3,
each of these functions equals �ð yÞ. This allows us to find an explicit
expression for the value function �ðxÞ.
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Denote by g the maximum average income per unit time defined by the
formula

g ¼ � sup
�

lim
t!1

t�1E�
x

Z t

0

½Utxt þ ð1�Ut Þð1� xt Þ	 dt: ð4:1Þ

Theorem 4.1. If � ¼ 0, then for any a > 0 the policy (1.5) is Blackwell
optimal (that is, it is uniformly optimal with respect to 	) for the problem
(1.4). Moreover, the value function �ðxÞ ¼ �	ðxÞ and the maximum average
income per unit time equal

H�	ðxÞ

¼

	�1
�þ 2	

a
ð1þ x2Þ

c
ð1þ x1Þ

b
�
�þ 	

a

� �
1þ

	

a
ð1� xÞ

� �

þ a�1 ½xþ x1ð1� xÞ	
�c
½xþ x2ð1� xÞ	

�b
�1�

�þ 	

a
ð1� xÞ

� �
;

if x � 1
2

�	�1
�þ 2	

a
ð1þ x2Þ

c
ð1þ x1Þ

b
�
�þ 	

a

� �
1þ

	

a
x

� �

þa�1 ½ð1� xþ x1xÞ
�c
ð1� xþ x2xÞ

�b
� 1�

�þ 	

a
x

�
;

if x � 1
2

ð4:2Þ

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

g ¼ �
ð1þ x2Þ

�ð1þx1Þ=ðx1�x2Þð1þ x1Þ
ð1þx2Þ=ðx1�x2Þ � 1

2ð1þ x2Þ
�ð1þx1Þ=ðx1�x2Þð1þ x1Þ

ð1þx2Þ=ðx1�x2Þ � 1
; ð4:3Þ

respectively, where the constant H in (4.2) is

H ¼
�

a
1þ

	

a

	 

þ 2þ

	

a

	 

ð1þ x2Þ

c
ð1þ x1Þ

b �þ 2	

a
�
�

a

� �
; ð4:4Þ

and b and c are given by the expressions (3.24) and

x1;2 ¼
�

2a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�

2a

	 
2s
:
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Proof. It follows from the paragraph preceding Theorem 4.1 and the
definition of �ð yÞ that

d ð yÞ ¼
�ð yÞ � 1� 	=a� e �y

	ð2þ 	=aÞ
; y � 0 ð4:5Þ

d ð yÞ being defined by (3.21). Hence, we get �ð yÞ ¼ 	ð2þ 	=aÞ d ð yÞ
þ1þ 	=aþ e �y. Substituting this expression in (3.20) we obtain

f ð yÞ ¼ K� 	�1 2þ
	

a

	 
�1" #
1þ

	

a
þ e �y

	 


þ K	 2þ 	=að Þ d ð yÞ; y � 0 ð4:6Þ

and in view of (3.18)

Vð yÞ ¼ K� 	�1 2þ
	

a

	 
�1" #
1þ

	

a
�

1

1þ e �y

	 


þ K	 2þ
	

a

	 

d ð yÞ

1þ e �y
; y � 0: ð4:7Þ

On the other hand, formula (3.21) implies

am

1þ e �y
d ð yÞ ¼ð1þ x2 e

yÞ
�b
ð1þ x1 e

yÞ
�c 1

1þ e y

� 1þ
�þ 	

a

1

1þ e �y

	 

; y � 0:

Hence, the expression (4.7) turns into

Vð yÞ ¼ K� 	�1 2þ
	

a

	 
�1" #
1þ

	

a

1

1þ e �y

	 

þ
K

m

	

a
2þ

	

a

	 


� ð1þ x2 e
yÞ
�b
ð1þ x1 e

yÞ
�c 1

1þ e y

�

� 1þ
�þ 	

a

1

1þ e �y

	 

	; y � 0:
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Because bþ c ¼ �1, we rewrite �	ðxÞ ¼ Vðln ð1� xÞ=xÞ in the following
form

�	ðxÞ ¼

�
K� 	�1 2þ

	

a

	 
�1��
1þ

	

a
ð1� xÞ

�
þ
K

m

	

a
2þ

	

a

	 


� ½xþ x2ð1� xÞ	
�b
½xþ x1ð1� xÞ	

�c

�

�1�
�þ 	

a
ð1� xÞ

�
; x � 1=2: ð4:8Þ

We determine the unknown constant K from the condition (3.11). The
derivative of �	ðxÞ is

�
0

	ðxÞ ¼ �
	

a
K� 	�1 2þ

	

a

	 
�1" #
þ
K

m

	

a
2þ

	

a

	 


�
�þ 	

a
�

	

�
þ
�

�
x

	 

½xþ x1ð1� xÞ	

b
½xþ x2ð1� xÞ	

c

� �
; x � 1=2:

Thus, condition (3.11) implies that

K ¼ 	�1 2þ
	

a

	 
�1
m

H
; ð4:9Þ

H being given by (4.4).
Substituting (4.9) in (4.8) and taking into account condition (3.10) we

get (4.2). The Laurent expansion of �	ðxÞ implies that

g ¼ lim
	#0

	�	ðxÞ:

From the above limiting expression for g and the equalities (4.2) and (4.4)
we obtain (4.3). &

Comparing formulas (1.1), (4.1) and (1.4) we see that 1þ g is equal to
the average time the investor makes the right decision following the policy
(1.5). It is easy to verify that 1þ g is between 1

2 and 1. In fact, for any fixed
� > 0

lim
a!0
ð1þ gÞ ¼ 1; lim

a!1
ð1þ gÞ ¼

1

2
:

The sense of these formulas is quite apparent. If the underlying intensity
switches rarely, then the investor is able to determine the high intensity asset
almost all the time. Conversely, if the underlying intensity switches too
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often, then the investor is unable to improve on a policy based on random
coin flipping.

5. PROOF OF THEOREM 3.1 (APPENDIX 1)

The theorem reduces the Poisson two-armed bandit problem, which is a
problem with incomplete information, to an equivalent problem for a
completely observed control process. Rigorous proof of the theorem
involves lengthy definitions of arbitrary history dependent policies. Proof of
the theorem can be accomplished with the martingale methods that are used
if there is no switching, Presman and Sonin (1990, Sections 1.7, 4.1, and 4.2),
which in our model corresponds to the case a ¼ 0. Here we only sketch the
proof utilizing Bayes’ rule to reevaluate xtþ�t for given xt, Ut and obser-
vations on the interval ½t; tþ�t	. Following Bertsekas and Shreve (1978)
and Dynkin and Yushkevich (1979) we define a model M ¼ fS;C;Z; k; rg
that consists of the following elements:

(1) The state space S ¼ f1; 2g consists of two elements. The state
s ¼ i; i ¼ 1; 2, means that the hypothesis Hi is true;

(2) The space of all admissible controls is C ¼ ½0; 1	. This is the state
space of the process fUtg;

(3) The observation space Z ¼ f0; 1; 2g. We observe the state z ¼ 0 if
the process fN1

t þN
2
t g has no jumps over the interval ðt; tþ�t Þ. If the

process fN1
t g (fN

2
t gÞ has jumps over the interval ðt; tþ�t Þ, then we observe

the state z ¼ 1 ðz ¼ 2).
(4) The transition kernel k�tð � jsÞ is a measure on S depending on s 2 S

which we define as follows

k�tð1j1Þ ¼ k�tð2j2Þ ¼ 1� a�t;

k�tð1j2Þ ¼ k�tð2j1Þ ¼ a�t;

(5) The observation kernel r�tð � js; uÞ is a conditional probability on Z
depending on ðs; uÞ 2 S� C. We set

r�tð1j1; uÞ ¼ �u�t; r�tð2j1; uÞ ¼ �ð1� uÞ�t;

r�tð1j2; uÞ ¼ �u�t; r�tð2j2; uÞ ¼ �ð1� uÞ�t;

r�tð0j1; uÞ ¼ 1� ½�uþ �ð1� uÞ	�t ¼ 1� ð�� "uÞ�t;

r�tð0j2; uÞ ¼ 1� ½�uþ �ð1� uÞ	�t ¼ 1� ð�þ "uÞ�t;
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where in the formulas for k and r the lower index denotes the length of the
time interval.

We apply the well known filtration algorithm to the model M. The
algorithm is used to calculate the a priori and a posteriori probabilities of the
states of space S in sequential time intervals. It follows from the definition of
the process xt ¼ P

�
t fH1jFtg, that its value at time t is equal to the a posteriori

probability of the state 1 2 S. Denote by pt the a priori probability of this
state and assume that in the interval ðs; tþ�t Þ; s < t; �t > 0, the control
Ut is used. Since we shall pass to a limit as s " t and �t # 0 the assumption is
not restrictive. Then, the filtration equations take the following form

ptþ�t ¼ k�tþt�sð1j1Þxs þ k�tþt�sð1j2Þð1� xsÞ

¼ ½1� að�tþ t� sÞ	xs þ að�tþ t� sÞð1� xsÞ; ð5:1Þ

xtþ�tðzÞ

¼
r�tþt�sðzj1;Ut Þptþ�t

r�tþt�sðzj1;Ut Þptþ�t þ r�tþt�sðzj2;Ut Þð1� ptþ�t Þ
; z 2 Z: ð5:2Þ

If t ¼ tn is a jump-time of the process fN
i
t g; i ¼ 1; 2, then we observe jumps

of the process in every interval ðs; tþ�t Þ, s < t, �t > 0. Setting z ¼ i,
i ¼ 1; 2, in (5.2), from (5.1), the definitions of r�tþt�sðij1;Ut Þ and
r�tþt�sðij2;Ut Þ, and passing to a limit first as s " t and after that as �t # 0
we get (3.1). If t is not a jump-time of the process fN1

t þN
2
t g then taking �t

small enough and s sufficiently close to t, then no jumps of the process will
be observed in ðs; tþ�t Þ. Therefore, in the case z ¼ 0, Eq. (5.2) becomes

xtþ�t

¼
½1� ð�� "uÞð�tþ t� sÞ	ptþ�t

½1� ð�� "uÞð�tþ t� sÞ	ptþ�t þ ½1� ð�þ "uÞð�tþ t� sÞ	ð1� ptþ�t Þ
:

Substituting ptþ�t from (5.1) in the last formula, multiplying by the
denominator of the expression in the right-hand side and passing to a limit
as s " t we get

xtþ�t � x
�
t ¼�t ½�ðxtþ�t � x

�
t Þ � "ð2Ut � 1Þxtþ�tx

�
t

� "ð1�Ut Þxtþ�t þ "Utx
�
t þ að1� 2x

�
t Þ	 þ oð�t Þ:

The limit as �t # 0 of the expression in the brackets exists and equals

�ðxt � x
�
t Þ � "ð2Ut � 1Þxtx

�
t � "ð1�Ut Þxt þ "Utx

�
t þ að1� 2x

�
t Þ: ð5:3Þ
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Thus lim�t#0 ðxtþ�t � x
�
t Þ=�t exists. Hence, we obtain that xt ¼ x

�
t : From

this fact and (5.3) we deduce that the right derivative of xt at point t exists
and equals the expression in the right-hand side of formula (3.2). Repeating
the same considerations for the interval ðs; t Þ we see that the left derivative
of xt exists and that the two derivatives coincide. Finally, if �t # 0 then the
probability that N1

t (N
2
t ) jumps in the interval ðt; tþ�t Þ is equal to

Ut½�xtþ �ð1�axt Þ	�tþ oð�t Þðð1�Ut Þ½�xt þ �ð1� xt Þ	�tþ oð�t ÞÞ:

Therefore, Ut½�xt þ �ð1� axt Þ	 þ ð1�Ut Þ½�xt þ �ð1� xt Þ	 is the jump rate
of both fxtg and fN

1
t þN

2
t g. &

6. PROOF OF THEOREM 3.3. (APPENDIX 2)

We precede the proof of this theorem with four lemmas.

Lemma 6.1. The following inequalities hold

ðkþ x2uÞ
�b
ðkþ x1uÞ

�c > kþ 1þ
"þ 	

a

	 

u; ð6:1Þ

ðkþ x2uÞ
bþ1
ðkþ x1uÞ

cþ1 > k� 1þ
	

a

	 

u; ð6:2Þ

ðkþ x2uÞ
�B
ðkþ x1uÞ

�C > kþ 1þ
�þ 	

a

	 

u; ð6:3Þ

ðkþ x2uÞ
Bþ1
ðkþ x1uÞ

Cþ1 > k� 1þ
�þ 	

a

	 

u; ð6:4Þ

where 0 < u < x1k, k > 0, and x1; x2; b; c;B;C, being defined by (3.23)–
(3.27).

Proof. Consider the functions

G1ðuÞ ¼ ðkþ x2uÞ
�B
ðkþ x1Þ

�C
� k� 1þ

�þ 	

a

	 

u;

G2ðuÞ ¼ ðkþ x2uÞ
Bþ1
ðkþ x1Þ

Cþ1
� kþ 1þ

�þ 	

a

	 

u:
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Calculations show that

Bx2 þ Cx1 ¼ �1�
�þ 	

a
ð6:5Þ

bx2 þ cx1 ¼ �1�
"þ 	

a
: ð6:6Þ

From the identities x1x2 ¼ �1, x1 þ x2 ¼ "=a; as well as (6.5) we get

G 01ðuÞ ¼ ðkþ x2uÞ
�B�1
ðkþ x1uÞ

�C�1 k 1þ
�þ 	

a

	 

� u

� �
� 1�

�þ 	

a
;

G 001ðuÞ ¼Mk
2ðkþ x2uÞ

�B�2
ðkþ x1uÞ

�C�2;

G 02ðuÞ ¼ �ðkþ x2uÞ
B
ðkþ x1uÞ

C k 1þ
�þ 	

a

	 

þ u

� �
þ 1þ

�þ 	

a
;

G 002ðuÞ ¼Mk
2ðkþ x2uÞ

B�1
ðkþ x1uÞ

C�1:

Since Bþ C ¼ �1 it is easy to see that G1ð0Þ ¼ G
0
1ð0Þ ¼ G2ð0Þ ¼ G

0
2ð0Þ ¼ 0,

whereas both G 001ðuÞ and G 002ðuÞ are positive. This implies that G1ðuÞ > 0,
G2ðuÞ > 0, which proves both (6.3) and (6.4). Repeating the same argument
for the functions

g1ðuÞ ¼ ðkþ x2uÞ
�b
ðkþ x1uÞ

�c
� k� 1�

"þ 	

a

	 

u;

g2ðuÞ ¼ ðkþ x2uÞ
bþ1
ðkþ x1uÞ

cþ1
þ 1þ

	

a

	 

u� k;

we get (6.1) and (6.2). &

Lemma 6.2. Both functions d ð yÞ and Dð yÞ are increasing and convex
provided y < ln x1.

Proof. Since the proof is similar for the two functions we shall prove
the claim of the lemma only for the function d ð yÞ. Calculating the first
derivative of d ð yÞ we obtain

am e yd 0ð yÞ ¼ ð1þ x2 e
yÞ
�b�1
ð1þ x1 e

yÞ
�c�1 1þ

	

a

	 

e y � 1

� �
þ 1:

Making the substitution u ¼ e y and applying (6.2) we get d 0ð yÞ > 0, which
proves the first claim of the lemma. Since d ð yÞ satisfies condition (3.29) we
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deduce that d ð yÞ > 0. Moreover, d ð yÞ is a solution of Eq. (3.27). Hence, its
second derivative is equal to

d 00ð yÞ ¼
1� ða e �y � a� 	Þd ð yÞ

"� 2a sinh y

	 
0

¼
a e �yd ð yÞ þ ða e y þ aþ 	Þd 0ð yÞ

"� 2a sinh y
> 0: ð6:7Þ

Therefore, the function d ðY Þ is convex. &

The next lemma plays a central role in the proof of Theorem 3.1.

Lemma 6.3. The functions d ð yÞ and Dð yÞ satisfy the inequalities

ða e �y � �� a� 	Þd ð yÞ þ �d ð y� 
Þ > ða e �y � �� a� 	ÞDð yÞ; ð6:8Þ

ða e �y � �� a� 	ÞDð yÞ þ �Dð y� 
Þ < ða e �y � a� 	Þd ð yÞ; ð6:9Þ

for all y < ln x1.

Proof. The inequality (6.8) can be rewritten in the form

ða e �y � �� a� 	Þ½Dð yÞ � d ð yÞ	 < �d ð y� 
Þ: ð6:10Þ

Making elementary calculations we get that the left-hand side of the last
inequality is equal to

e �y e �y � 1�
�þ 	

a

	 


� ½M�1Rðe y;�B;�CÞ �m�1Rðe y;�b;�cÞ	

þ ðm�1 �M�1Þ e �2yRðe y; 1; 1Þ �
�

am
e �y þ 1þ

"þ 	

a

	 

; ð6:11Þ

where Rðu; �; 	Þ ¼ ð1þ x2uÞ
�
ð1þ x1uÞ

	.
Similarly, we can transform the right-hand side of (6.8) into

�

am
e �yð�=�þ x2 e

yÞ
�b
ð�=�þ x1 e

yÞ
�c
�
�

am
e �y �

�

am
1þ

"þ 	

a

	 

: ð6:12Þ
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From (6.11), (6.12), the identities bþ c ¼ Bþ C ¼ �1, and the easily veri-
fied equality

e �yRðe y; 1; 1Þ ¼ ð1þ x1 e
yÞ e �y þ ðx1 � x2ÞB� 1�

�þ 	

a

� �
;

we see that (6.10) is equivalent to

e �y � 1�
�þ 	

a

	 

ð1þ x1 e

yÞ m ½Sðe yÞ	
B
�M ½Sðe yÞ	bþM�m

Mm

þ B
ðx1 � x2ÞðM�mÞ

Mm
ð1þ x1 e

yÞ þ
"

am

<
�

am

�

�
þ x2 e

y

	 
�b �

�
þ x1 e

y

	 
�c
; ð6:13Þ

where SðuÞ ¼ Rðu;�1; 1Þ ¼ ð1þ x1uÞ=ð1þ x2uÞ.
It is convenient to introduce new variables u 2 ½0; ln x1Þ and � 2 ½0;1Þ

defined by

u ¼ e y; � ¼ lnSðe yÞ ¼ lnSðuÞ:

Then

Sðe yÞ ¼ e �; e �y � 1�
�þ 	

a
¼ �ðx1 � x2Þ

Cþ Be �

e � � 1
;

1þ x1 e
y ¼ ðx1 � x2Þ

e �

x1 � x2 e �
:

Let

Tð�Þ ¼
e B�

B
�
C

c

e b�

b
þ
e C�

C
�
B

b

e c�

c
þ

1

BC
�

1

bc

	 

:

We rewrite the left-hand side of (6.13) in terms of � as

e �

ðe � � 1Þðx1 � x2 e �Þ
Tð�Þ þ

"

am
:

If we set u ¼ e y in the right-hand side of (6.13) we get

�

am

�

�
þ x2u

	 
�b �

�
þ x1u

	 
�c
:
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From (6.1) with k ¼ �=�, we bound the above expression from below by

�

am
1þ 1þ

"þ 	

a

	 

u

� �
þ

"

am
:

To verify (6.8) it is sufficient to prove the inequality

�

am
1þ 1þ

"þ 	

a

	 

u

� �
>

e �

ðe � � 1Þðx1 � x2 e �Þ
Tð�Þ

¼
ð1þ x1uÞð1þ x2uÞ

ðx1 � x2Þ
2u

Tð�Þ;

or equivalently

�

am
�
u½1þ ð1þ "=aþ 	=aÞu	

ð1þ x1uÞð1þ x2uÞ
> ðx1 � x2Þ

�2Tð�Þ: ð6:14Þ

The derivatives of the left-hand side and right-hand side with respect to u are
equal to

�

am

uð1þ "=aþ 	=aÞ

ð1þ x1uÞð1þ x2uÞ
þ
½1þ ð1þ "=aþ 	=aÞu	ðu2 þ 1Þ

ð1þ x1uÞ
2
ð1þ x2uÞ

2

� �

and

e � � 1

ðx1 � x2Þ
2

B

b
e b� � e B�Þ�0ðuÞ ¼

B

b
e b� � e B�

	 

u

ð1þ x1uÞð1þ x2uÞ
2
;

	

respectively. Since, if u ¼ 0, both sides of (6.14) are equal to zero, then it is
enough to verify that the derivative of the left-hand side is greater than the
derivative of the right-hand side. Multiplying both derivatives by
u�1ð1þ x1uÞð1þ x2uÞ

2 we obtain the inequality

B

b
e b� � e B� <

�

am
1þ

"þ 	

a

	 

ð1þ x2uÞ þ 1þ 1þ

"þ 	

a

	 

u

� �
uþ u�1

1þ x1u

� �

¼
�

am
�
1þ 2ð1þ "=aþ 	=aÞuþ ½1þ ð"=aÞð1þ "=aþ 	=aÞ	u2

uð1þ x1uÞ
:
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The left-hand side of the last inequality is a decreasing function of both �
and u. The derivative of the right-hand side equals

�
�

am
�
½ðx1 � x2Þð1þ "=aþ 	=aÞ � 1	u

2 þ 2x1uþ 1

u2ð1þ x1uÞ
:

Calculating the discriminant of the numerator of the last expression we
obtain 1� x1 þ x2 þ x

2
2 < 0. Therefore, the right-hand side of the last

inequality is also a decreasing function of u, which reaches a minimum value
of B=b� 1 at the point u ¼ x1. However, the value B=b� 1 also equals the
maximum value of the right-hand side reached for � ¼ 0, that is x1u ¼ x2u.
This completes the proof of inequality (6.8). The proof of inequality (6.9) is
similar and we omit it. &

Corollary 6.4. The function Dð yÞ � d ð yÞ, y < 0; is increasing.

Proof. It follows from inequality (6.8) and Lemma 6.2 that

ða e �y � a� 	Þd ð yÞ > ða e �y � �� a� 	Þd ð yÞ þ �d ð y� 
Þ

> ða e �y � �� a� 	ÞDð yÞ:

Since d ð yÞ and Dð yÞ are solutions of (3.27) and (3.28), respectively, the last
inequality implies that D0ð yÞ > d 0ð yÞ. In particular, in view of condition
(3.29) we have Dð yÞ > d ð yÞ for all y < ln x1: &

Lemma 6.5. If �=a is small enough, then there exists a constant K such
that d ð yÞ � �ð yÞ � Dð yÞ for all y � K.

Proof. Lemma 6.2 implies that d ð yÞ � d ð y� 
Þ > 0 for all y < ln x1.
Because d ð yÞ satisfies (3.27) we obtain the following inequality

d 0ð yÞ <
1� ða e �y � a� 	Þd ð yÞ þ �½d ð yÞ � d ð y� 
Þ	

"� 2a sinh y
: ð6:15Þ

Similarly, because the function Dð yÞ is positive and satisfies (3.28) we get

D0ð yÞ >
1� ða e �y � a� 	ÞDð yÞ þ �½Dð yÞ �Dð y� 
Þ	

"� 2a sinh y
: ð6:16Þ

On the other hand, the derivative �0ð yÞ satisfies the equation

� 0ð yÞ ¼
1� ða e �y � a� 	Þ�ð yÞ þ �½�ð yÞ � �ð y� 
Þ	

"� 2a sinh y
: ð6:17Þ
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We set �1ð yÞ ¼ �ð yÞ �Dð yÞ; �2ð yÞ ¼ d ð yÞ � �ð yÞ. It follows from (6.15),
(6.16) and (6.17) that

� 01ð yÞ <
�½�1ð yÞ � �1ð y� 
Þ	 þ ðaþ 	� a e

�yÞ�1ð yÞ

"� 2a sinh y
; ð6:18Þ

� 02ð yÞ <
�½�2ð yÞ � �2ð y� 
Þ	 þ ðaþ 	� a e

�yÞ�2ð yÞ

"� 2a sinh y
: ð6:19Þ

Moreover, since both d ð yÞ and Dð yÞ as well as �ð yÞ tend to zero as y!�1
it follows that

lim
y!�1

�1ð yÞ ¼ lim
y!�1

�2ð yÞ ¼ 0: ð6:20Þ

We need to prove that there exists a constant K such that �1ð yÞ � 0 and
�2ð yÞ � 0 for all y � K. Assume the contrary. Then, without loss of gen-
erality we may suppose that for every K there exists y � K such that
�1ð yÞ > 0. Let us choose the number y1 so that the following conditions hold

y1 < � ln 1þ
�þ 	

a

	 

; ð6:21Þ

Z y1

�1

dt

"� 2a sinhðt Þ
<

1

2�
; ð6:22Þ

�1ð y1Þ ¼ � > 0: ð6:23Þ

Both functions d ð yÞ and Dð yÞ coincide provided �=a ¼ 0. Moreover, the
function Dð yÞ � d ð yÞ is continuous with respect to �=a and because it is
positive, it follows that it increases in �=a provided �=a is small enough.
Combining these facts with Corollary 3.1 we obtain that

sup
y<y1

½Dð yÞ � d ð yÞ	 < �; ð6:24Þ

for all sufficiently small �=a.
Let z1 be the largest number less than y1 and such that �1ðz1Þ ¼ 0. If

such a number does not exist we set z1 ¼ 1. Then, in view of (6.23), the
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function �1ð yÞ will be positive in the interval z1; y1ð Þ. Integrating (6.18) from
z1 to y1 and taking into account (6.21) and (6.23) we get

� ¼ �1ð y1Þ

< ��

Z y1

z1

�1ðt� 
Þ

"� 2a sinhðt Þ
dtþ

Z y1

z1

�þ aþ 	� a e �t

"� 2a sinhðt Þ
�1ðt Þ dt

< ��

Z y1

z1

�1ðt� 
Þ

"� 2a sinhðt Þ
dt

¼ ��

Z y1�


z1�


�1ðt Þ

"� 2a sinhðtþ 
Þ
dt:

The last inequality and (6.22) imply that there exists a number
z2 2 ½z1 � 
; y1 � 
	 such that �1ð y2Þ < �2�. Therefore, utilizing (6.24) and
the identity Dð y2Þ � d ð y2Þ ¼ ��1ð y2Þ � �2ð y2Þ we obtain that �2ð y2Þ > �.
Obviously, conditions (6.21) and (6.22) hold for y2 as well. Now, we are in a
position to apply to y2 and �2 the same considerations as those for y1 and �1.
Denoting by z2 the largest number z2 < y2 such that �2ðz2Þ ¼ 0, integrating
(6.19) from z2 to y2 and utilizing (6.21) we get

� < �2ð y2Þ < ��

Z y2�


z2�


�2ðt Þ

"� 2a sinhðtþ 
Þ
dt:

Thus, it follows from (6.22) that there exists y3 2 ½z2 � 
; y2 � 
	 such that
�2ð y3Þ < �2�, whereas in view of (6.24) and the identity Dð y3Þ � d ð y3Þ ¼
��1ð y3Þ � �2ð y3Þ we conclude that �1ð y3Þ > �. Repeating this procedure, we
can construct a sequence y2uþ1

� �
, u � 0, such that limu!1 y2uþ1 ¼ �1, and

at the same time �1ð y2uþ1Þ > � for all u � 0. However, this contradicts
(6.20). &

Proof of Theorem 3.3. It follows from Lemma 6.2 and condition (3.30)
that d ð yÞ > 0 and d 0ð yÞ > 0: Let K be a constant for which the claim of
Lemma 6.5 holds and � be an arbitrary number such that � < K. Without
loss of generality we assume that � < � lnð1þ �=aþ 	=aÞ: Then, a e �y�
a� �� 	 > 0 and Lemmas 6.3 and 6.5 imply that

ða e �y � a� �� 	ÞDð yÞ < ða e �y � a� �� 	Þd ð yÞ þ �d ð y� 
Þ

� ða e �y � a� �� 	Þ�ð yÞ þ ��ð y� 
Þ; ð6:25Þ

ða e �y � a� 	Þd ð yÞ > ða e �y � a� �� 	ÞDð yÞ þ �Dð y� 
Þ

� ða e �y � a� �� 	Þ�ð yÞ þ ��ð y� 
Þ: ð6:26Þ
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Since the functions d ð yÞ, Dð yÞ and �ð yÞ satisfy Eqs. (3.27), (3.28) and (6.17),
respectively, it follows from (6.25) and (6.26) that inequality (3.31) holds
provided y � �. Hence, the inequality (3.31) is fulfilled for some interval
ð�; � þ �0Þ. Making use of (6.25) and (6.26) we get the inequality (3.32) in
this interval as well. Repeating these considerations we can prove the claim
of the theorem in the interval ½�;� lnð1þ �=aþ 	=aÞ	. If
y > � lnð1þ �=�þ 	=�Þ, then a e �y � �� a� 	 < 0 and both (6.25) and
(6.26) cannot be used to prove the inequalities (3.31) and (3.32). However,
since the last inequalities hold at the point y ¼ � lnð1þ �=aþ 	=aÞ it fol-
lows from the continuity of the functions d ð yÞ, Dð yÞ and �ð yÞ that they will
be fulfilled also up to the point y ¼ � lnð1þ 	=aÞ provided �=a is small
enough. On the other hand, if y � � lnð1þ 	=aÞ then we use the following
inequalities in place of (6.25) and (6.26)

ða e �y � �� a� 	ÞDð yÞ < ða e �y � �� a� 	Þ�ð yÞ þ ��ð y� 
Þ

ða e �y � a� 	Þd ð yÞ > ða e �y � a� 	Þ�ð yÞ þ �½�ð yÞ � �ð y� 
Þ	:

These inequalities follow from (3.31) and (3.32) and they allow us to apply
the same method in the interval (� lnð1þ 	=aÞ; 0Þ as for the interval
½�;� lnð1þ �=aþ 	=aÞ	. Finally, since � is chosen arbitrarily, it follows that
the inequality (3.31) is satisfied on the whole negative half-time. &

7. SOLUTION OF EQUATION (3.18) (APPENDIX 3)

We consider the following system of functional-differential equations.
If t � 0, then

f 01ðt Þ ¼ ð"� 2a sinh t Þ�1

� f�½ f1ðt Þ � f1ðt� 
Þ	 þ ðaþ 	� a e
t Þ f1ðt Þ þ 1g; ð7:1Þ

if t � 0, then

f 02ðt Þ ¼ ð"� 2a sinh t Þ�1

� f�½ f2ðt Þ � f2ðt� 
Þ	 þ ðaþ 	� a e
�t Þ f2ðt Þ þ 1g; ð7:2Þ

and

f1ðt Þ ¼ e
tf2ðt Þ;2 ½�
; 0	; ð7:3Þ
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where �; �; "; 	; 
; a are positive constants such that

� > �; " ¼ �� �; 
 ¼ ln �� ln�: ð7:4Þ

Equation (7.2) is in fact Eq. (3.19) whose solution is (3.20) as we shall show
later in the Appendix (see Theorem 7.7). The system (7.1)–(7.3) appears in
the form of a Bellman equation for the value function of the problem of
optimal detection of the jump times of a Poisson process, see Donchev
(1995b). It follows by dynamic programming reasoning that the system
(7.1)–(7.3) has a unique solution that coincides with the value function of
the optimal detection problem. From the theory of functional-differential
equations, existence and uniqueness results for (7.1)–(7.3) are difficult to
obtain. In particular, if we try to solve (7.1)-(7.3) there are at least two
difficulties to overcome. The first is the singularity that (7.1) has at the point

t ¼ lnð"=2aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð"=2aÞ2

q
Þ and the second is the delaying argument of (7.2)

on the negative half-line.
We first examine (7.2). To do so, we consider the corresponding

homogeneous equation

�0ðt Þ ¼ ð"� 2a sinh t Þ�1

� f�½�ðt Þ � �ðt� 
Þ	 þ ðaþ 	� a e �t Þ�ðt Þg; t � 0: ð7:5Þ

We shall show that Eq. (7.5) has a non-trivial solution on the negative half-
line. The next theorem contains preliminary information about the
asymptotic behavior of the solution.

Theorem 7.1. (i) Every solution of (7.5) satisfies

�ðt Þ ¼ Cð1þ 	=aþ e �t Þ þ oð1Þ; ð7:6Þ

as t!�1, where C is a constant. (ii) If Eq. (7.2) has a solution then the
solution has the same asymptotic behavior as (7.6).

Proof. We consider the equation

½�"xð1� xÞ þ að1� 2xÞ	�0ðxÞ þ ½�xþ �ð1� xÞ	

� �
�x

�xþ �ð1� xÞ

	 

� �ðxÞ

� �
� ð1� xÞ

¼ 	�ðxÞ; x 2 ½1=2; 1	: ð7:7Þ
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As shown by Donchev and Yushkevich (1997), if we introduce a logarithmic
scale t ¼ lnð1� xÞ � ln x, the function Uðt Þ ¼ �ðð1þ e t Þ�1Þ, and define

f2ðt Þ ¼ ð1þ e
�t ÞUðt Þ; ð7:8Þ

then (7.7) equals (7.2) with 
 ¼ ln �� ln�. Moreover, in this case the
homogeneous equation corresponding to (7.2) is the same as (7.5). Thus, if
(7.2) (respectively (7.5)) has a solution then (7.7) (respectively the homo-
geneous equation corresponding to (7.7)) has a solution as well.

Let f2ðt Þ be a solution of (7.2) and consider the corresponding
function �ðxÞ. Applying the Lagrange formula to the difference
�ð�x= ð�xþ �ð1� xÞÞÞ � �ðxÞ on the left-hand side of (7.7) we obtain

�
�x

�xþ �ð1� xÞ

	 

� �ðxÞ

¼ �0ð�Þ
"xð1� xÞ

�xþ �ð1� xÞ
; for � 2 x;

�x

�xþ �ð1� xÞ

� �
:

Substituting this expression in (7.7) we get

�ð1� xÞ þ "xð1� xÞ½�0ð�Þ � �0ðxÞ	 þ að1� 2xÞ�0ðxÞ ¼ 	�ðxÞ: ð7:9Þ

Solving (7.7) with respect to �0ðxÞ and taking into consideration the fact that
a > 0 and �ðxÞ is a continuously differentiable function, we deduce that �ðxÞ
has a smooth second derivative in a neighborhood of the point x ¼ 1.
Therefore, we apply the Lagrange formula once again to the difference
�0ð�Þ � �0ðxÞ, which appears in the second term of (7.9). So, we obtain

að1� 2xÞ�0ðxÞ ¼ 	�ðxÞ þ 1� xþOðð1� xÞ2Þ; as x! 1: ð7:10Þ

We now use the logarithmic scale t ¼ lnð1� xÞ � ln x and Uðt Þ. Then
(7.10) takes the following form

2aU 0ðt Þ sinh t ¼ � 	Uðt Þ � ð1þ e �t Þ�1

þOðð1þ e �t Þ�2Þ; as t!�1: ð7:11Þ
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The solution of the last equation is

Uðt Þ ¼ exp �
	

2a

Z t

�1

du

sinh u

	 


� C1 �

Z t

�1

expð	=2a
R u
�1

ds=sinh sÞ

2að1þ e �uÞ sinh u
du

�

þ

Z t

�1

exp
	

2a

Z u

�1

ds

sinh s

	 

Oðð1þ e �uÞ�2Þ

du

sinh u

�

¼
e �t � 1

e �t þ 1

	 
�	=2a
C1 þ a

�1

Z t

�1

ðe �u � 1

� 
ð	=2aÞ�1
ðe �u þ 1Þ�ð	=2aÞ�2 e �u du

þ

Z t

�1

e �u � 1

e �u þ 1

	 
	=2a
e �uOðð1þ e �uÞ�2Þ

ðe �u � 1Þðe �u þ 1Þ
du

#
; ð7:12Þ

C1 ¼ lim
t!�1

Uðt Þ; t!�1:

The first integral in (7.12) equals

	�1ð2þ 	=aÞ�1 1�
e �t � 1

e �t þ 1

	 
	=2a
½1þ ð	=aÞð1þ e �t Þ�1	

( )
:

In view of the inequalities

e �u � 1

e �u þ 1
< 1 and

1

e �u � 1
<

2

e �u þ 1

which hold for u < 0 the second integral can be written as

Z t

�1

ð1þ e �uÞ�2Oðð1þ e �uÞ�2Þd ð1þ e �uÞ ¼ Oðð1þ e �uÞ�3Þ:

Substituting these expressions in (7.12) we obtain the following asymptotic
formula for Uðt Þ

Uðt Þ ¼ C�1ðt Þ þ �2ðt Þ þOðð1þ e
�t Þ
�3
Þ; t!�1; ð7:13Þ
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where

�1ðt Þ ¼
e �t � 1

e �t þ 1

	 
�	=2a
;

�2ðt Þ ¼ �
1þ ð	=aÞð1þ e �t Þ�1

	ð2þ 	=aÞ
;

and

C ¼ C1 þ 	
�1ð2þ 	=aÞ�1:

Applying Newton’s formula to �1ðt Þ we get

�1ðt Þ ¼
e �t � 1

e �t þ 1

	 
�	=2a

¼ 1�
2

1þ e �t

	 
�	=2a

¼ 1þ ð	=aÞð1þ e �t Þ�1 þ oðð1þ e �t Þ�1Þ; t!�1: ð7:14Þ

It follows from (7.13) and (7.14) that

Uðt Þ ¼ C1½1þ ð	=aÞð1þ e
�t Þ
�1
	 þ oðð1þ e �t Þ�1Þ; t!�1: ð7:15Þ

Note that �1ðt Þ is a solution of the homogeneous equation corresponding to
(7.11). This homogeneous equation arises from (7.5) and the homogeneous
equation corresponding to (7.7). Now both claims of the theorem follow
from (7.8), (7.14), (7.15) and the remark after formula (7.8). &

As follows from (7.15), �2ðt Þ plays an important role in (7.13). Namely,
it ensures that C1 ¼ limt!�1Uðt Þ holds in (7.15). It is remarkable that
f2ðt Þ ¼ ð1þ e

�t Þ�2ðt Þ is a global solution (that is, a solution on the entire
real line) of (7.2).

Theorem 7.2. The functions

f1ðt Þ ¼ �
1þ 	=aþ e t

	ð2þ 	=aÞ
; ð7:16Þ

f2ðt Þ ¼ �
1þ 	=aþ e �t

	ð1þ 	=aÞ
; ð7:17Þ

are global solutions of Eqs. (7.1) and (7.2), respectively.
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Proof. To prove the theorem it is enough to substitute f1ðt Þ and f2ðt Þ
from (7.16) and (7.17) into (7.1) and (7.2). &

Note that the functions from (7.16) and (7.17) (which are the equations
displayed in Theorem 7.2) do not satisfy the system (7.1)–(7.3) because (7.3)
is not fulfilled. On the other hand, we could multiply the right-hand side of
(7.17) by e t and try to solve Eq. (7.1) on ð�1; 0	 with an initial condition
�ð1þ ð1þ 	=aÞ e tÞ=	ð2þ 	=aÞ given on ½�
; 0	: However, in this case we
will not be able to escape the singularity that (7.1) has at the point

t ¼ lnð"=2aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð"=2aÞ2

q
Þ: To overcome these difficulties we need full

characterization of the set of all solutions of Eq. (7.2) on the negative half-
line.

Denote by Vðt; sÞ and Uðt; sÞ the fundamental functions of Eqs. (7.1)
and (7.2), respectively. So, for any fixed s;Vðt; sÞ (respectively Uðt; sÞ) is a
solution of the homogeneous equation corresponding to (7.1) (respectively
(7.2)) with an initial condition given on ½s� 
; s	 by the formula ’ðt Þ ¼ 0 if
s� 
 < t < s and ’ðt Þ ¼ 1 if t ¼ s. Then Vðs; sÞ ¼ Uðs; sÞ ¼ 1 and
Vðt; sÞ ¼ Uðt; sÞ ¼ 0 for t < s. If 0 � t� s � 
 then in order to calculate
Vðt; sÞ (respectively Uðt; sÞ) one has to solve the following ordinary dif-
ferential equation: f 0ðt Þ ¼ ð"� 2a sinh t Þ�1 ð�þ aþ 	� a e t Þ f ðt Þ (respec-
tively f 0ðt Þ ¼ ð"� 2a sinh t Þ�1ð�þ aþ 	 �a e �t Þ f ðt ÞÞ, s � t � sþ 
, with
an initial condition f ðsÞ ¼ 1: Solving these equations we obtain the fol-
lowing expressions for the functions Vðt; sÞ and Uðt; sÞ

Vðt; sÞ ¼
1þ x2 e

s

1þ x2 e t

	 
b
1þ x1 e

s

1þ x1 e t

	 
c
; ð7:18Þ

Uðt; sÞ ¼ e s�t
1þ x2 e

s

1þ x2 e t

	 
b
1þ x1 e

s

1þ x1 e t

	 
c
; ð7:19Þ

where x1;2 ¼ "=2a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð"=2aÞ2

q
are the roots of the equation x2�

ð"=aÞx� 1 ¼ 0;

b ¼
1þ ð�þ 	Þ=aþ x2

x1 � x2
; c ¼ �

1þ ð�þ 	Þ=aþ x1
x1 � x2

: ð7:20Þ

It is easy to verify that b > 0 and the identity bþ c ¼ �1 holds. It follows
from (7.18) and (7.19) that

Uðt; sÞ ¼ e s�tVðt; sÞ; s � t � sþ 
: ð7:21Þ

Since Uðt; sÞ ¼ Vðt; sÞ ¼ 0 if t < s; (7.21) is obviously fulfilled for all t < s: If
t > sþ 
 then the formulas for Vðt; sÞ and Uðt; sÞ are more complicated.

300 Donchev, Rachev, and Steigerwald



Nevertheless, it turns out that (7.21) holds in this case as well. Consider the
equations

f 0ðt Þ ¼ ð"� 2a sinh t Þ�1f�½ f ðt Þ � f ðt� 
Þ	 þ ðaþ 	� a e t Þ f ðt Þg; ð7:22Þ

f 0ðt Þ ¼ ð"� 2a sinh t Þ�1f�½ f ðt Þ � f ðt� 
Þ	 þ ðaþ 	� a e �t Þ f ðt Þg ð7:23Þ

and denote by f1ð�; ’Þðt Þ (respectively f2ð�; ’Þðt Þ), � 2 R , ’ 2 Cð½� � 
; �	Þ,
the solution of (7.22) (respectively (7.23)) on ½�;1Þ with an initial condition
’:

Theorem 7.3.

(i) For every real � and ’ 2 Cð½� � 
; �	Þ

f1ð�; e
ð � Þ’Þðt Þ ¼ e tf2ð�; ’Þðt Þ; t � �: ð7:24Þ

(ii) The identity (7.21) is fulfilled for all real t and s.

Proof. From Hale (1977, Thm 6.3.2) we obtain the following repre-
sentation for the functions f1ð�; e

ð � Þ’Þðt Þ and f2ð�; ’Þðt Þ for t � �

f2ð�; ’Þðt Þ ¼Uðt; �Þ’ð�Þ

� �

Z �

��


’ðsÞUðt; sþ 
Þ½"� 2a sinhðsþ 
Þ	�1 ds; ð7:25Þ

f1ð�; e
ð � Þ’Þðt Þ ¼Vðt; �Þe �’ð�Þ

� �

Z �

��


’ðsÞ e sVðt; sþ 
Þ½"� 2a sinhðsþ 
Þ	�1 ds: ð7:26Þ

First, we shall prove claim (i) in the case of � � t � � þ 
. Since t � sþ 2

for all s 2 ½� � 
; �	 one can apply (7.21) to both Vðt; �Þ and Vðt; sþ 
Þ in
the right-hand side of (7.26). Making simple calculations we get (7.24). Now,
we are in a position to prove (ii). Let us fix s and divide the interval ½s;1Þ
into segments of length 
 : ½s;1Þ ¼

S
n�0 ½sþ n
; sþ ðnþ 1Þ
Þ: We shall

prove by induction that (7.21) holds in every segment ½sþ
n
; sþ ðnþ 1Þ
Þ; n ¼ 0; 1; . . . : For n ¼ 0 the claim has already been proved.
Assuming that (ii) holds true for t 2 ½sþ k
; sþ ðkþ 1Þ
Þ and some integer
k � 0 we shall prove that (7.21) is satisfied in the next segment as well.
Indeed, to find the functions Vðt; sÞ and Uðt; sÞ on ½sþ ðkþ 1Þ
; sþ ðkþ 2Þ
Þ
one must solve Eqs. (7.22) and (7.23), respectively, taking as initial condi-
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tions the already calculated values of these functions on
½sþ k
; sþ ðkþ 1Þ
Þ. According to the induction hypothesis, (7.21) holds
on ½sþ k
; sþ ðkþ 1Þ
Þ. Applying (i) with � ¼ sþ ðkþ 1Þ
; ’ð � Þ ¼
e �sUð � ; sÞ and t 2 ½sþ ðkþ 1Þ
; sþ ðkþ 2Þ
Þ we get the claim for n ¼ kþ 1:
Thus, (ii) is proved.

In order to prove (7.24) for � � t � � þ 
 we have used only formula
(7.21) with t� s � 
: Since, according to (ii) the last formula holds for all t
and s it follows that (7.24) is fulfilled for all t � �: &

Consider the following domain in the plane

ðs; t Þ : D ¼ fðs; t Þ : s � t � 0g:

Theorem 7.4. The function Uðt; sÞ is continuous and bounded in D.

Proof. The coefficients of Eq. (7.23) are bounded continuous functions
provided t � 0: For any fixed s � 0; the function Uðt; sÞ is given by formula
(7.19) if s � t � sþ 
 and Uðt; sÞ satisfies (7.23) with an initial condition
fsþ
ð � Þ ¼ Usþ
ð � ; sÞ if t � sþ 
. Here, as it is generally assumed in the
theory of functional-differential equations, for any f 2 Cð½s; t	g; t � sþ 

and � 2 ½sþ 
; t	; f�ð � Þ denotes a function belonging to Cð½�
; 0	Þ which
is defined by f�ð�Þ ¼ f ð� þ �Þ; � 2 ½�
; 0	: In view of (7.19), since sþ

 þ � 2 ½s; sþ 
	 provided � 2 ½�
; 0	 it follows that

Usþ
ð�; sÞ

¼ e ���

1þ x2 e

s

1þ x2 e sþ
þ�

	 
b
1þ x1 e

s

1þ x1 e sþ
þ�

	 
c
; � 2 ½�
; 0	: ð7:27Þ

The last function is continuous in both � and s if � 2 ½�
; 0	 and
s � �
. Being a solution of (7.23) with the continuous initial condition
(7.27), Uðt; sÞ is continuous with respect to t if t � sþ 
. The continuity of
Uðt; sÞ for t 2 ½s; sþ 
	 follows from (7.19). It remains to prove that Uðt; sÞ is
continuous with respect to s for every fixed t � 0. The case s � t� 
 holds
by inspection. The proof is not trivial if s < t� 
: Let s < t� 
 and fsng be a
sequence converging to s. Then, because of the continuity of (7.27) with
respect to both � and s, the corresponding sequence of initial conditions
fUsnþ
ð � ; snÞg will converge uniformly to Usþ
ð � ; sÞ. Thus, the continuity of
Uðt; sÞ in s follows from the theorem for the continuous dependence of the
solutions of functional differential equations on the initial data, (Hale (1977,
Thm 2.2.2).
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In order to prove the second claim of the theorem let us rewrite (7.23) in
the form

f 0ðt Þ ¼ �Aðt Þ f ðt Þ � Bðt Þ f ðt� 
Þ: ð7:28Þ

where Aðt Þ ¼ ð"� 2a sinh t Þ�1ða e �t � a� �� 	Þ; Bðt Þ ¼ �ð"� 2a sinh t Þ�1

and set � ¼ � lnð1þ ð	þ 2�Þ=aÞ: It is easy to see that the coefficient Aðt Þ is
a decreasing function of t; for t < 0, whereas Bðt Þ is an increasing function
of t; and for t < � the inequality Bðt Þ < Aðt Þ holds.

Consider the following domains in the plane ðs; t Þ

D1 ¼ fðs; t Þ 2 D : s � t � �g;

D2 ¼ fðs; t Þ 2 D : t � s � �g;

D3 ¼ fðs; t Þ 2 D : t � �; s � �g:

Obviously, D ¼ D1 [D2 [D3 and it is enough to prove the claim in each of
domains D1;D2; and D3. Since D2 is a compact set and Uðt; sÞ is a con-
tinuous function the proof is trivial in D2:

For D1 consider the following subdomains of D1 : Dn
1 ¼ fðs; t Þ 2

D1 : t � �� 1=ng, n ¼ 1; 2; . . . : Since the closure of the set
S

n�1 D
n
1 coin-

cides with D1 it follows from the continuity of Uðt; sÞ that it is sufficient to
prove its boundedness in each of domains Dn

1; n ¼ 1; 2; . . . : If t � �� 1=n
then Aðt Þ � Að�� 1=nÞ, and supt���1=n jBðt Þj � Bð�� 1=nÞ < Að�� 1=nÞ
and therefore, according to Hale (1977, Eq. (5.9.2)), the trivial solution of
(7.28) is uniformly stable for t � �� 1=n. This means that for any
� � �� 1=n and d > 0 there exists � ¼ �ðdÞ such that the inequality k’k < �
implies kð f2Þtð�; ’Þk < d for all � � t � �� 1=n: Here k � k denotes a sup-
norm and f2ð�; ’Þ is the same as in Theorem 7.3.

Let us now represent Eq. (7.28) in operator form. That is

f 0ðt Þ ¼ Lðt; ftð � ÞÞ;

where Lðt; ’Þ; t � 0; ’ 2 Cð½�
; 0	Þ is the following operator

Lðt; ’Þ ¼ �Aðt Þ’ð0Þ � Bðt Þ’ð�
Þ:

Because if t < �� 1=n, then both Aðt Þ and Bðt Þ are between 0 and 1, we
have that

jLðt; ’Þj � mk’k; with m ¼ 2: ð7:29Þ

We apply Lemma 6.6.2. in Hale (1977) to (7.28) and use (7.29) to obtain the
claim in Dn

1:
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For any fixed s < �, the function Uðt; sÞ satisfies

f ðt Þ ¼

Z t

�

Lðu; fuð � ÞÞ duþUð�; sÞ; ð7:30Þ

on ½�; 0	 with the initial condition f�ð � Þ ¼ U�ð � ; sÞ. Note that if t < 0 then
(7.29) also holds with m ¼ ð2�þ 	Þ=". Since ðs; �Þ 2 D1 it follows from
(7.29) and (7.30) that

jUðt; sÞj �

Z t

�

jLðu;Uuð � ; sÞ duj þ jUð�; sÞj

� m

Z t

�

kUuð � ; sÞkduþ K;

where K ¼ supðt;sÞ2D1
jUðt; sÞj. Therefore

kUtð � ; sÞk � m

Z t

�

kUuð � ; sÞk duþ K: ð7:31Þ

Applying Gronwall’s lemma to (7.31) we get

kUtð � ; sÞk� K 1

where K 1 ¼ Ke
m�; t 2 ½�; 0	: Hence, sup��t�0jUðt; sÞj � K 1: Since the

constant K 1 does not depend on s it follows that Uðt; sÞ is bounded in D3

as well. &

Remark. All results cited in the proof relate to the case when the
functional-differential equation is given on the whole real line, whereas we
consider it in the interval ð�1; �� 1=n	. However, setting in (7.27)
Aðt Þ ¼ Að�� 1=nÞ; B tð Þ ¼ Bð�� 1=nÞ, for t > �� 1=n we get an equation
that is defined on the whole real line coinciding with (7.27) in ð�1; �� 1=n	:
Since all cited results hold true for the last equation it follows that they hold
for (7.27) in the interval ð�1; �� 1=n	 as well.

We now return to the problem of the explicit form of the solution of the
system of functional-differential Eqs. (7.1)–(7.3).

We begin this section with the following lemma.

Lemma 7.5. Let us set Xð�; t Þ ¼ f2ð�; 1þ 	=aþ e
�ð � ÞÞðt Þ, � � �
,

where as in Theorem 7.3, f2ð�; 1þ 	=aþ e
�ð � ÞÞðt Þ denotes the solution of

Eq. (7.23) with an initial condition ’ðt Þ ¼ 1þ 	=aþ e �t given on ½� � 
; �	:
Then
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(i) Xð�; t Þ > 1þ b=aþ e �t; for t 2 ½�; � þ 
	; (7.32)

ðiiÞ max
t2½�;�þ
	

½Xð�; t Þ � 1� beta=a� e �t	

¼ Oðe �Þ; as �!�1: ð7:33Þ

Proof. If t 2 ½�; � þ 
	 then Xð�; t Þ is calculated from (7.25), where
Uðt; sÞ is given by (7.19). We first set ’ðsÞ ¼ 1 in (7.25) and evaluate the
integral to obtain

K 1ðt Þ ¼ e
��t 1þ x2 e

�

1þ x2 e t

	 
b
1þ x1 e

�

1þ x1 e t

	 
c

þ
�

am
e �t þ 1þ

�þ 	

a
� e ��t

1þ x2 e
�

1þ x2 e t

	 
b
1þ x1 e

�

1þ x1 e t

	 
c"

� e �� þ 1þ
�þ 	

a

	 
�
: ð7:34Þ

We next set ’ðsÞ ¼ e �s in (7.25) and evaluate the integral to obtain

K 2ðt Þ ¼ e
�t 1þ x2 e

�

1þ x2 e t

	 
b
1þ x1 e

�

1þ x1 e t

	 
c

þ
�

am
1þ 1þ

�þ 	

a

	 

e �t � e ��t

1þ x2 e
�

1þ x2 e t

	 
b
1þ x1 e

�

1þ x1 e t

	 
c(

� 1þ 1þ
�þ 	

a

	 

e ��

� ��
: ð7:35Þ

In (7.34) and (7.35)

m ¼ �ðx1 � x2Þ
2bc ¼ 1þ

�þ 	

a

	 

1þ

�þ 	

a

	 

� 1: ð7:36Þ
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Note that Xð�; t Þ � 1� 	=a� e �t equals ð1þ 	=aÞK 1ðt Þ þ K 2ðt Þ � 1� 	=a
�e �t, so that the derivative of Xð�; t Þ � 1� 	=a� e �t with respect to t is

�m�1
�

a
1þ

�þ 	

a

	 

þ
�

a
ð1þ 	=aÞ �m

� �

� 1þ
e t½1þ ð�þ 	Þ=a	 � 1

ð1þ x1 e t Þð1þ x2 e t Þ

1þ x2 e
�

1þ x2 e t

	 
b(

�
1þ x1 e

�

1þ x1 e t

	 
c
½e �ð1þ ð�þ 	Þ=aÞ þ 1	

�
e �t:

It is easy to verify that ð�=aÞð1þ ð�þ 	Þ=aÞ þ ð�=aÞð1þ 	=aÞ is less
than m. So, the first factor in this expression is negative. Simple calculations
show that the second factor is an increasing function of t. Thus, the second
factor reaches the minimum value me 2�ð1þ x1 e

�Þ
�1
ð1þ x2 e

�Þ
�1 > 0 at the

point t ¼ �. Therefore, the function Xð�; t Þ � 1� 	=a� e �t increases on
½�; � þ 
	 and Xð�; �Þ � 1� 	=a� e �� ¼ 0, so (7.32) holds. Further,
Xð�; t Þ � 1� 	=a� e �t reaches its maximum at t ¼ � þ 
. We set t ¼ � þ 

in (7.34) and define a new function �KK1ðuÞ so that �KK1ðe

�Þ ¼ K 1ð� þ 
Þ: Then

�KK1ðuÞ ¼
�

am
�
�



RðuÞ þ SðuÞ; ð7:37Þ

where

RðuÞ ¼ u�1 1� �
1þ x2u

�þ �x2u

	 
b
�
1þ x1u

�þ �x1u

	 
c" #
; ð7:38Þ

SðuÞ ¼
�

�
�
1þ x2u

�þ �x2u

	 
b
�
1þ x1u

�þ �x1u

	 
c

� 1�
�

am
1þ

�þ 	

a

	 
� �
þ
�

am
1þ

�þ 	

a

	 

: ð7:39Þ

In a neighborhood of u ¼ 0,

�
1þ x2u

�þ �x2u

	 
b
�
1þ x1u

�þ �x1u

	 
c
¼ 1þ

"

�
1þ

�þ 	

a

	 

uþOðu2Þ; ð7:40Þ
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and hence

RðuÞ ¼ �
"

�
1þ

�þ 	

a

	 

þOðuÞ; as u! 0: ð7:41Þ

Taking in (7.39) only the first term of the Taylor series of the function in the
left-hand side of (7.40) we get

SðuÞ ¼
�

�
1�

�

am
1þ

�þ 	

a

	 
� �

þ
�

am
1þ

�þ 	

a

	 

þOðuÞ; as u! 0: ð7:42Þ

It follows from (7.37), (7.41), and (7.42) that

�KK1ðuÞ ¼ �=�þOðuÞ; as u! 0: ð7:43Þ

Similarly, if we set u ¼ e � and evaluate K 2ðt Þ � e
�t at t ¼ � þ 
 we obtain

�KK2ðuÞ �
�

�
u�1 ¼ RðuÞ

�

am
uþ 1þ

�þ 	

a

	 

� 1

� �
þ

"�

a�m
;

where �KK2ðuÞ is defined by �KK2ðe
�Þ ¼ K 2ð� þ 
Þ: From (7.41) we get

�KK2ðuÞ �
�

�
u�1 ¼

"

�
1þ

	

a

	 

þOðuÞ; as u! 0: ð7:44Þ

Because Xð�; t Þ � 1� 	=a� e �t ¼ K 2ðt Þ � e
�t þ ð1þ 	=aÞ½K 1ðt Þ � 1	 the

second claim of the lemma follows from (7.43) and (7.44). &

Theorem 7.6. Equation (7.5) has a non-trivial solution on the negative
half-line.

Proof. Consider the following functions defined on ð�1; 0	 :

�nðt Þ ¼
1þ 	=aþ e �t

Xð�n
; t Þ

t � �n


t 2 ½�n
; 0	:

(

We shall prove that the sequence f�ngn�1, converges uniformly to some
function �ðt Þ that satisfies (7.5) on the whole negative half-line.

Optimal Policies for Investment 307



Consider the series

�1ðt Þ þ
X1
n¼1

½�nþ1ðt Þ � �nðt Þ	: ð7:45Þ

From (7.25) we obtain

�nþ1ðt Þ � �nðt Þ

¼

0

Xðt Þ � 1� 	=a� e �t

½Xð�n
Þ � 1� 	=a� e n
 	Uðt;�n
Þ

��
R �n

�ðnþ1Þ
 ½XðsÞ � 1� 	=a� e

�s	

�½"� 2a sinhðsþ 
Þ	�1Uðt; sþ 
Þ ds

t � �ðnþ 1Þ


t 2 ½�ðnþ 1Þ
;�n
	

t 2 ½�n
; 0	;

8>>>>>><
>>>>>>:

where, for the sake of brevity, we have omitted the first argument of
Xð�ðnþ 1Þ
; t Þ: Therefore, it follows from Theorem 7.4, Lemma 7.5, and
convergence of the integral

R 0
�1
ð"� 2a sinh sÞ�1 ds that for all n sufficiently

large

j�nþ1ðt Þ � �nðt Þj � K e
�n
;

where K is a constant. Thus, series (7.45) converges uniformly to �ðt Þ. It
remains to prove that �ðt Þ satisfies (7.5) on ð�1; 0	:

Let t 2 ½�
; 0	. For every n � 1, the function �nðt Þ satisfies (7.5) on
½�
; 0	, so it follows that

�0n ¼ �Aðt Þ�nðt Þ � Bðt Þ�nðt� 
Þ; for n ¼ 1; 2; . . . ; ð7:46Þ

where Aðt Þ and Bðt Þ are the coefficients defined after (7.28). From (7.46) we
deduce that

�01 þ
X1
n¼1

½�0nþ1ðt Þ � �
0
nðt Þ	

¼ �Aðt Þ �1ðt Þ þ
X1
n¼1

½�nþ1ðt Þ � �nðt Þ	

( )

� Bðt Þ �1ðt� 
Þ þ
X1
n¼1

½�nþ1ðt� 
Þ � �nðt� 
Þ	

( )

¼ �Aðt Þ�ðt Þ � Bðt Þ�ðt� 
Þ:
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Therefore, differentiating series (7.45) we obtain that in this case �ðt Þ
satisfies Eq. (7.5).

If t 2 ½�ðkþ 1Þ
;�k
	; for k � 1; then we represent �ðt Þ in the form

�ðt Þ ¼ �kþ1ðt Þ þ
X1
n¼kþ1

½�nþ1ðt Þ � �nðt Þ	

and repeat the same argument for (7.46) with n ¼ kþ 1; kþ 2; . . . : &

Now, we are able to characterize the set of all solutions of (7.2) on the
negative half-line.

Theorem 7.7. The function

f2ðt Þ ¼ �
1þ 	=aþ e �t

	ð2þ 	=aÞ
þ C�ðt Þ; ð7:47Þ

where C, a generic constant, is a general solution of Eq. (7.2) on (�1; 0	:

Proof. According to Theorems 7.2 and 7.6 f2ðt Þ is a solution of Eq.
(7.2) for all C. It remains to prove that every solution of this equation can be
represented in the form (7.47) with some constant C. Let f ðt Þ be such a
solution. Then, from Theorem 7.1, f ðt Þ ¼ C1ð1þ 	=aþ e

�t Þ þ oð1Þ as
t!�1 with some constant C1. In addition, from the proof of Theorem 7.6
�ðt Þ ¼ 1þ 	=aþ e �t þ oð1Þ as t!�1: Therefore, if we set C equal to
C1 þ 	

�1ð2þ 	=aÞ�1 in (7.47), then we obtain a solution f2ðt Þ that has the
same asymptotic behavior as f ðt Þ for t!�1. Thus, for every � > 0 there
exists a � < 0 such that

sup
t��
j f ðt Þ � f2ðt Þj < �: ð7:48Þ

If t 2 ½�; 0	 then, from Hale (1977, Thm 6.3.2), f ðt Þ has the following
representation

f ðt Þ ¼ f ð�ÞUðt; �Þ � �

Z �

��


f ðsÞUðt; sþ 
Þ½"� 2a sinhðsþ 
Þ	�1 ds

þ

Z t

�

Uðt; sÞð"� 2a sinh sÞ�1 ds;
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and that the representation for f2ðt Þ is obtained by replacing f ðt Þ with f2ðt Þ.
Hence,

f ðt Þ � f2ðt Þ ¼ ½ f ð�Þ � f2ð�Þ	Uðt; �Þ

� �

Z �

��


½ f ðsÞ � f2ðsÞ	Uðt; sþ 
Þ½"� 2a sinhðsþ 
Þ	�1 ds:

From (7.48) and the boundedness of Uðt; sÞ we get

max
t2½�;0	

j f ðt Þ � f2ðt Þj < K�; K ¼ const: ð7:49Þ

where K is a constant. Because � > 0 is arbitrary in (7.48) and (7.49) it
follows that f ðt Þ ¼ f2ðt Þ. &

From the last theorem we are in a position to prove our main result
about the solution of system (7.1)–(7.3).

Theorem 7.8. The system (7.1)–(7.3) has a unique solution, provided
that �=a is small enough.

Proof. According to Theorem 7.7 the general solution of (7.2) on
ð�1; 0	 is given by (7.47). To satisfy (7.1) and (7.3) one must multiply (7.47)
by e t on ½�
; 0	 and solve (7.1) with an initial condition e tf2ðt Þ, for
t 2 ½�
; 0	. We shall show that taking a suitable constant C in (7.47) we can
escape the singularity that (7.1) has at t ¼ ln x1. Then, because the coefficients
of (7.1) are unbounded only in a neighborhood of t ¼ ln x1, the existence and
uniqueness of the solution of (7.1) follow from Hale (1977, Thm 6.1.1).

We set k ¼ ln x1 and take an arbitrary � 2 ð0;minðk; 
=2ÞÞ. From (7.18)
the solution of (7.1) has the following representation in ½k� �; kþ �	:

f1ðt Þ ¼Vðt; k� �Þ f1ðk� �Þ

� �

Z k��

k���


f1ðsÞ½"� 2a sinhðsþ 
Þ	�1Vðt; sþ 
Þ ds

þ

Z t

k��

ð"� 2a sinh sÞ�1Vðt; sÞ ds

¼ ð1þ x2 e
t Þ
�b
ð1þ x1 e

t Þ
�c

� ð1þ x2 e
k��Þ

b
ð1þ x1 e

k��Þ
cf1ðk� �Þ þ

Z t

k��

½1� �f1ðs� 
Þ	

�

� ð"� 2a sinh sÞ�1ð1þ x2 e
sÞ
b
ð1þ x1 e

sÞ
c ds

�
: ð7:50Þ
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Because 1þ x2 e
k ¼ 0 and b > 0, the function f1ðt Þ is bounded in a neigh-

borhood of t ¼ k only if

0 ¼ ð1þ x2 e
k��Þ

b
ð1þ x1 e

k��Þ
cf1ðk� �Þ

þ

Z t

k��

½1� � f1ðs� 
Þ	ð"� 2a sinh sÞ�1ð1þ x2 e
sÞ
b
ð1þ x1 e

sÞ
c ds: ð7:51Þ

From l’Hôpital’s rule one can verify that (7.51) is sufficient for boundedness
of f1ð � Þ. From Theorem 7.7 if t 2 ½k� �� 
; k� �	, then

f1ðt Þ ¼ f
ð1Þ
1 ðt Þ þ f

ð2Þ
1 ðt Þ þ C f

ð3Þ
1 ðt Þ; ð7:52Þ

for some constant C, where f
ð1Þ
1 ðt Þ is a solution of (7.1) with initial condition

f
ð1Þ
1 ð0Þ ¼ 0, f

ð2Þ
1 ðt Þ is a solution of (7.22) with initial condition on ½�
; 0	

equal to �ð1þ e tð1þ ð	=aÞÞÞ=ð	ð2þ ð	aÞÞÞ, and f
ð3Þ
1 ðt Þ is a solution of

(7.22) with initial condition on ½�
; 0	 equal to e t�ðt Þ. Note that if t � k� �,
then the coefficients of (7.1) and (7.22) are bounded and, therefore, all
functions in (7.52) are well defined.

Substituting f1ðt Þ from (7.52) into (7.51) we obtain a linear algebraic
equation, ~AAC þ ~BB ¼ 0, for the constant C that always has a solution C ¼ �CC
if ~AA 6¼ 0. If C 6¼ 0, then setting C ¼ �CC in (7.52) ensures that the condition
(7.51) holds. Therefore we obtain a bounded solution of (7.1) in
½k� �; kþ �	 given by (7.50). Because the coefficients of (7.1) are bounded
continuous functions for t � kþ �, it follows that the solution can be
extended to the entire positive half-line.

To complete the proof, it is sufficient to show that

~AA ¼ð1þ x2 e
k��Þ

b
ð1þ x1 e

k��Þ
cf
ð3Þ
1 ðk� �Þ

� �

Z t

k��

f
ð3Þ
1 ðs� 
Þð"� 2a sinh sÞ�1ð1þ x2 e

sÞ
b
ð1þ x1 e

sÞ
c ds

6¼ 0: ð7:53Þ

To show this, we assume the contrary. Then, repeating the above argument
that was used for f1ðt Þ and (7.1), we see that

f
ð3Þ
1 ðt Þ ¼ ð1þ x2 e

t Þ
�b
ð1þ x1 e

t Þ
�c

� ð1þ x2 e
k��Þ

b
ð1þ x1 e

k��Þ
c f
ð3Þ
1 ðk� �Þ

h

��

Z t

k��

f
ð3Þ
1 ðs� 
Þð"� 2a sinh sÞ�1ð1þ x2 e

sÞ
b
ð1þ x1 e

sÞ
c ds

�
;
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remains bounded in ½k� �; kþ �	. Therefore, f ð3Þ1 ð � Þ can be extended on
½kþ �;1Þ to satisfy (7.22). From Theorem 7.3(i) and Theorem 7.6 we
conclude that

�ðt Þ ¼
�ðt Þ; t � 0;

e �tf
ð3Þ
1 ðt Þ; t � 0;

�

is a non-trivial global solution of (7.5). Then, it follows from Theorem 7.2
that Fðt Þ ¼ f2ðt Þ þ �ðt Þ=ð	ð2þ 	=aÞÞ, f2ðt Þ being given by (7.17), is a global
solution of (7.2). Moreover, (7.6) implies that Fðt Þ ¼ oð1Þ, as t!�1. Recall
that the function �ðt Þ from Theorem 3.3 has the same asymptotic as t!�1.
Utilizing the same arguments as in the proof of Theorem 7.7 we conclude that
Fðt Þ ¼ �ðt Þ, for t < ln x1. Now, inequality (3.31) and the explicit formulae
(3.21) and (3.22) for d ðt Þ and Dðt Þ imply that Fðt Þ has a singularity at point
t ¼ ln x1. Thus, it cannot be a global solution of (7.2). &
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